Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 538
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 217-224, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678602

ABSTRACT

This study aimed to experimentally compare the uric acid-lowering effect and renal protection of Yiqing Fang in a rat model of hyperuricemia. Additionally, we used network pharmacology to predict the potential active components, targets, and pathways of Yiqing Fang. Male SD rats were randomly divided into control, model, Yiqing Fang, allopurinol, and probenecid groups. Serum creatinine (Scr), blood urea nitrogen (BUN), serum uric acid (UA), alanine transaminase (ALT), complete blood count, and urinary NAG enzyme levels were measured. Standard pathology and electron microscopy samples were prepared from the left kidney to observe renal pathological changes, renal fibrosis, and collagen III expression levels. In addition, we employed network pharmacology to investigate the molecular mechanisms and pathways of Yiqing Fang. The Yiqing Fang group showed significantly lower levels of Scr, BUN, UA, ALT, urinary NAG enzyme, complete blood count, and liver function tests compared to the model group (P < 0.05). Furthermore, both the Yiqing Fang and allopurinol groups exhibited significant reductions in renal pathological changes compared to the model group, along with decreased expression of collagen III. Network pharmacology analysis identified a total of 27 specific sites related to hyperuricemia. The main active components were predicted to include quercetin, berberine, beta-sitosterol, epimedin C, and dioscin. The primary target sites were predicted to include TNF, IL-6, IL-17, IL-1B, and VEGFA. Yiqing Fang may exert its effects through regulation of drug response, urate metabolism, purine compound absorption, inflammation response, lipopolysaccharide response, cytokine activity, and antioxidant activity. These effects may be mediated through signaling pathways such as IL-17, HIF-1, and AGE-RAGE. Yiqing Fang offers potential as a treatment for hyperuricemia due to its multiple active components, targeting of various sites, and engagement of multiple pathways.


Subject(s)
Drugs, Chinese Herbal , Hyperuricemia , Kidney , Rats, Sprague-Dawley , Uric Acid , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Male , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Uric Acid/blood , Rats , Disease Models, Animal , Network Pharmacology/methods , Creatinine/blood , Blood Urea Nitrogen
2.
Eur J Med Chem ; 271: 116407, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38663283

ABSTRACT

Xanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are two most widely studied targets involved in production and reabsorption of uric acid, respectively. Marketed drugs almost target XOR or URAT1, but sometimes, single agents might not achieve aim of lowering uric acid to ideal value in clinic. Thus, therapeutic strategies of combining XOR inhibitors with uricosuric drugs were proposed and implemented. Based on our initial work of virtual screening, A and B were potential hits for dual-targeted inhibitors on XOR/URAT1. By docking A/B with XOR/URAT1 respectively, compounds I1-7 were designed to get different degree of inhibition effect on XOR and URAT1, and I7 showed the best inhibitory effect on XOR (IC50 = 0.037 ± 0.001 µM) and URAT1 (IC50 = 546.70 ± 32.60 µM). Further docking research on I7 with XOR/URAT1 led to the design of compounds II with the significantly improved inhibitory activity on XOR and URAT1, such as II11 and II15. Especially, for II15, the IC50 of XOR is 0.006 ± 0.000 µM, superior to that of febuxostat (IC50 = 0.008 ± 0.000 µM), IC50 of URAT1 is 12.90 ± 2.30 µM, superior to that of benzbromarone (IC50 = 27.04 ± 2.55 µM). In acute hyperuricemia mouse model, II15 showed significant uric acid lowering effect. The results suggest that II15 had good inhibitory effect on XOR/URAT1, with the possibility for further investigation in in-vivo models of hyperuricemia.


Subject(s)
Drug Design , Enzyme Inhibitors , Organic Anion Transporters , Organic Cation Transport Proteins , Pyridines , Animals , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Mice , Humans , Structure-Activity Relationship , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Molecular Docking Simulation , Xanthine Dehydrogenase/antagonists & inhibitors , Xanthine Dehydrogenase/metabolism , Dose-Response Relationship, Drug , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Male , Uric Acid/metabolism
3.
Int Immunopharmacol ; 132: 111932, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38560961

ABSTRACT

Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1ß to bioactive IL-1ß. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.


Subject(s)
Gout , Homeostasis , Hyperuricemia , Signal Transduction , Uric Acid , Humans , Gout/metabolism , Gout/drug therapy , Uric Acid/metabolism , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
4.
Food Chem ; 448: 139076, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537545

ABSTRACT

One of the main reasons for hyperuricemia is high purine intake. The primary strategy for treating hyperuricemia is blocking the purine metabolism enzyme. However, by binding the purine bases directly, we suggested a unique therapeutic strategy that might interfere with purine metabolism. There have been numerous reports of extensive interactions between proteins and purine bases. Adenine, constituting numerous protein co-factors, can interact with the adenine-binding motif. Using Bayesian Inference and Markov chain Monte Carlo sampling, we created a novel adenine-binding peptide Ile-Tyr-Val-Thr based on the structure of the adenine-binding motifs. Ile-Tyr-Val-Thr generates a semi-pocket that can clip the adenine within, as demonstrated by docking. Then, using thermodynamic techniques, the interaction between Ile-Tyr-Val-Thr and adenine was confirmed. The KD value is 1.50e-5 (ΔH = -20.2 kJ/mol and ΔG = -27.6 kJ/mol), indicating the high affinity. In brief, the adenine-binding peptide Ile-Tyr-Val-Thr may help lower uric acid level by blocking the absorption of food-derived adenine.


Subject(s)
Adenine , Bayes Theorem , Monte Carlo Method , Peptides , Adenine/chemistry , Adenine/metabolism , Peptides/chemistry , Peptides/metabolism , Molecular Docking Simulation , Protein Binding , Hyperuricemia/metabolism , Humans , Thermodynamics , Uric Acid/chemistry , Uric Acid/metabolism , Binding Sites
5.
Eur J Pharmacol ; 971: 176528, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38556118

ABSTRACT

Hyperuricemic nephropathy (HN) is characterized by renal fibrosis and tubular necrosis caused by elevated uric acid levels. Ferroptosis, an iron-dependent type of cell death, has been implicated in the pathogenesis of kidney diseases. The objective of this study was to explore the role of ferroptosis in HN and the impact of a ferroptosis inhibitor, ferrostatin-1 (Fer-1). The study combined adenine and potassium oxonate administration to establish a HN model in mice and treated HK-2 cells with uric acid to simulate HN conditions. The effects of Fer-1 on the renal function, fibrosis, and ferroptosis-associated molecules were investigated in HN mice and HK-2 cells treated with uric acid. The HN mice presented with renal dysfunction characterized by elevated tissue iron levels and diminished antioxidant capacity. There was a significant decrease in the mRNA and protein expression levels of SLC7A11, GPX4, FTL-1 and FTH-1 in HN mice. Conversely, treatment with Fer-1 reduced serum uric acid, serum creatinine, and blood urea nitrogen, while increasing uric acid levels in urine. Fer-1 administration also ameliorated renal tubule dilatation and reduced renal collagen deposition. Additionally, Fer-1 also upregulated the expression levels of SLC7A11, GPX4, FTL-1, and FTH-1, decreased malondialdehyde and iron levels, and enhanced glutathione in vivo and in vitro. Furthermore, we first found that Fer-1 exhibited a dose-dependent inhibition of URAT1, with the IC50 value of 7.37 ± 0.66 µM. Collectively, the current study demonstrated that Fer-1 effectively mitigated HN by suppressing ferroptosis, highlighting the potential of targeting ferroptosis as a therapeutic strategy for HN.


Subject(s)
Cyclohexylamines , Ferroptosis , Hyperuricemia , Kidney Diseases , Phenylenediamines , Mice , Animals , Uric Acid , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Kidney Diseases/drug therapy , Fibrosis , Iron
6.
Eur J Med Chem ; 269: 116327, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38547733

ABSTRACT

We report the design and synthesis of a series of proline-derived quinoline formamide compounds as human urate transporter 1 (URAT1) inhibitors via a ligand-based pharmacophore approach. Structure-activity relationship studies reveal that the replacement of the carboxyl group on the polar fragment with trifluoromethanesulfonamide and substituent modification at the 6-position of the quinoline ring greatly improve URAT1 inhibitory activity compared with lesinurad. Compounds 21c, 21e, 24b, 24c, and 23a exhibit potent activities against URAT1 with IC50 values ranging from 0.052 to 0.56 µM. Furthermore, compound 23a displays improved selectivity towards organic anion transporter 1 (OAT1), good microsomal stability, low potential for genotoxicity and no inhibition of the hERG K+ channel. Compounds 21c and 23a, which have superior pharmacokinetic properties, also demonstrate significant uric acid-lowering activities in a mouse model of hyperuricemia. Notably, 21c also exhibits moderate anti-inflammatory activity related to the gout inflammatory pathway. Compounds 21c and 23a with superior druggability are potential candidates for the treatment of hyperuricemia and gout.


Subject(s)
Gout , Hyperuricemia , Organic Anion Transporters , Quinolines , Mice , Animals , Humans , Uric Acid/metabolism , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Quinolines/pharmacology
7.
Cell Host Microbe ; 32(3): 366-381.e9, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38412863

ABSTRACT

Hyperuricemia induces inflammatory arthritis and accelerates the progression of renal and cardiovascular diseases. Gut microbiota has been linked to the development of hyperuricemia through unclear mechanisms. Here, we show that the abundance and centrality of Alistipes indistinctus are depleted in subjects with hyperuricemia. Integrative metagenomic and metabolomic analysis identified hippuric acid as the key microbial effector that mediates the uric-acid-lowering effect of A. indistinctus. Mechanistically, A. indistinctus-derived hippuric acid enhances the binding of peroxisome-proliferator-activated receptor γ (PPARγ) to the promoter of ATP-binding cassette subfamily G member 2 (ABCG2), which in turn boosts intestinal urate excretion. To facilitate this enhanced excretion, hippuric acid also promotes ABCG2 localization to the brush border membranes in a PDZ-domain-containing 1 (PDZK1)-dependent manner. These findings indicate that A. indistinctus and hippuric acid promote intestinal urate excretion and offer insights into microbiota-host crosstalk in the maintenance of uric acid homeostasis.


Subject(s)
Bacteroidetes , Hippurates , Hyperuricemia , Humans , Hyperuricemia/metabolism , Uric Acid/metabolism , Intestines , ATP-Binding Cassette Transporters/metabolism
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167051, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336103

ABSTRACT

Currently, it is acknowledged that gout is caused by uric acid (UA). However, some studies have revealed no correlation between gout and UA levels, and growing evidence suggests that 2,8-dihydroxyadenine (2,8-DHA), whose structural formula is similar to UA but is less soluble, may induce gout. Hence, we hypothesized that uroliths from hyperuricemia (HUA) patients, which is closely associated with gout, may contain 2,8-DHA. In this study, 2,8-DHA in uroliths and serum of HUA patients were determined using HPLC. Moreover, bioinformatics was used to investigate the pathogenic mechanisms of 2,8-DHA nephropathy. Subsequently, a mouse model of 2,8-DHA nephropathy established by the gavage administration of adenine, as well as a model of injured HK-2 cells induced by 2,8-DHA were used to explore the pathogenesis of 2,8-DHA nephropathy. Interestingly, 2,8-DHA could readily deposit in the cortex of the renal tubules, and was found in the majority of these HUA patients. Additionally, the differentially expressed genes between 2,8-DHA nephropathy mice and control mice were found to be involved in inflammatory reactions. Importantly, CCL2 and IL-1ß genes had the maximum degree, closeness, and betweenness centrality scores. The expressions of CCL2 and IL-1ß genes were significantly increased in the serum of 24 HUA patients with uroliths, indicating that they may be significant factors for 2,8-DHA nephropathy. Further analysis illustrated that oxidative damage and inflammation were the crucial processes of 2,8-DHA renal injury, and CCL2 and IL-1ß genes were verified to be essential biomarkers for 2,8-DHA nephropathy. These findings revealed further insights into 2,8-DHA nephropathy, and provided new ideas for its diagnosis and treatment.


Subject(s)
Adenine/analogs & derivatives , Gout , Hyperuricemia , Kidney Diseases , Humans , Mice , Animals , Hyperuricemia/metabolism , Kidney/metabolism , Uric Acid/metabolism
9.
Joint Bone Spine ; 91(3): 105698, 2024 May.
Article in English | MEDLINE | ID: mdl-38309518

ABSTRACT

OBJECTIVE: Hyperuricaemia is necessary for gout. High urate concentrations have been linked to inflammation in mononuclear cells. Here, we explore the role of the suppressor of cytokine signaling 3 (SOCS3) in urate-induced inflammation. METHODS: Peripheral blood mononuclear cells (PBMCs) from gout patients, hyperuricemic and normouricemic individuals were cultured for 24h with varying concentrations of soluble urate, followed by 24h restimulation with lipopolysaccharides (LPS)±monosodium urate (MSU) crystals. Transcriptomic profiling was performed using RNA-Sequencing. DNA methylation was assessed using Illumina Infinium® MethylationEPIC BeadChip system (EPIC array). Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was determined by flow cytometry. Cytokine responses were also assessed in PBMCs from patients with JAK2 V617F tyrosine kinase mutation. RESULTS: PBMCs pre-treated with urate produced more interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) and less interleukin-1 receptor anatagonist (IL-1Ra) after LPS simulation. In vitro, urate treatment enhanced SOCS3 expression in control monocytes but no DNA methylation changes were observed at the SOCS3 gene. A dose-dependent reduction in phosphorylated STAT3 concomitant with a decrease in IL-1Ra was observed with increasing concentrations of urate. PBMCs with constitutively activated STAT3 (JAK2 V617F mutation) could not be primed by urate. CONCLUSION: In vitro, urate exposure increased SOCS3 expression, while urate priming, and subsequent stimulation resulted in decreased STAT3 phosphorylation and IL-1Ra production. There was no evidence that DNA methylation constitutes a regulatory mechanism of SOCS3. Elevated SOCS3 and reduced pSTAT3 could play a role in urate-induced hyperinflammation since urate priming had no effect in PBMCs from patients with constitutively activated STAT3.


Subject(s)
Cytokines , Gout , STAT3 Transcription Factor , Suppressor of Cytokine Signaling 3 Protein , Uric Acid , Humans , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Uric Acid/pharmacology , STAT3 Transcription Factor/metabolism , Cytokines/metabolism , Gout/genetics , Gout/metabolism , Cells, Cultured , Male , Myeloid Cells/metabolism , Myeloid Cells/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Hyperuricemia/metabolism , Female , Middle Aged , DNA Methylation , Janus Kinase 2/metabolism
10.
Eur J Pharmacol ; 967: 176356, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38325797

ABSTRACT

Accumulating evidence suggests that excess fructose uptake induces metabolic syndrome and kidney injury. Here, we primarily investigated the influence of catalpol on fructose-induced renal inflammation in mice and explored its potential mechanism. Treatment with catalpol improved insulin sensitivity and hyperuricemia in fructose-fed mice. Hyperuricemia induced by high-fructose diet was associated with increases in the expressions of urate reabsorptive transporter URAT1 and GLUT9. Treatment with catalpol decreased the expressions of URAT1 and GLUT9. Futhermore, treatment with catalpol ameliorated renal inflammatory cell infiltration and podocyte injury, and these beneficial effects were associated with inhibiting the production of inflammatory cytokines including IL-1ß, IL-18, IL-6 and TNF-α. Moreover, fructose-induced uric acid triggers an inflammatory response by activiting NLRP3 inflammasome, which then processes pro-inflammatory cytokines. Treatment with catalpol could inhibit the activation of NLRP3 inflammasome as well. Additionally, TLR4/MyD88 signaling was activated in fructose-fed mice, while treatment with catalpol inhibited this activation along with promoting NF-κB nuclear translocation in fructose-fed mice. Thus, our study demonstrated that catalpol could ameliorate renal inflammation in fructose-fed mice, attributing its beneficial effects to promoting uric acid excretion and inhibit the activation of TLR4/MyD88 signaling.


Subject(s)
Hyperuricemia , Iridoid Glucosides , Nephritis , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Uric Acid/metabolism , Inflammasomes/metabolism , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Fructose/adverse effects , Adaptor Proteins, Signal Transducing/metabolism , NF-kappa B/metabolism , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism
11.
PLoS One ; 19(2): e0293378, 2024.
Article in English | MEDLINE | ID: mdl-38386624

ABSTRACT

This study evaluated 15 lactic acid bacteria with a focus on their ability to degrade inosine and hypo-xanthine-which are the intermediates in purine metabolism-for the management of hyperuricemia and gout. After a preliminary screening based on HPLC, Lactiplantibacillus plantarum CR1 and Lactiplantibacillus pentosus GZ1 were found to have the highest nucleoside degrading rates, and they were therefore selected for further characterization. S. thermophilus IDCC 2201, which possessed the hpt gene encoding hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and exhibited purine degradation, was also selected for further characterization. These three selected strains were examined in terms of their probiotic effect on lowering serum uric acid in a Sprague-Dawley (SD) rat model of potassium oxonate (PO)-induced hyperuricemia. Among these three strains, the level of serum uric acid was most reduced by S. thermophilus IDCC 2201 (p < 0.05). Further, analysis of the microbiome showed that administration of S. thermophlilus IDCC 2201 led to a significant difference in gut microbiota composition compared to that in the group administered with PO-induced hyperuricemia. Moreover, intestinal short-chain fatty acids (SCFAs) were found to be significantly increased. Altogether, the results of this work indicate that S. thermophilus IDCC 2201 lowers uric acid levels by degrading purine-nucleosides and also restores intestinal flora and SCFAs, ultimately suggesting that S. thermophilus IDCC 2201 is a promising candidate for use as an adjuvant treatment in patients with hyperuricemia.


Subject(s)
Hyperuricemia , Purine Nucleosides , Rats , Animals , Humans , Purine Nucleosides/metabolism , Uric Acid , Hyperuricemia/metabolism , Nucleosides , Streptococcus thermophilus , Rats, Sprague-Dawley , Xanthine
12.
Cytokine ; 175: 156502, 2024 03.
Article in English | MEDLINE | ID: mdl-38237388

ABSTRACT

BACKGROUND: Hyperuricemia has been shown to be an inducer of pro-inflammatory mediators by human primary monocytes. To study the deleterious effects of hyperuricemia, a reliable and stable in vitro model using soluble urate is needed. One recent report showed different urate-dissolving methods resulted in either pro-inflammatory or anti-inflammatory properties. The aim of this study was to compare the effect of two methods of dissolving urate on both primary human peripheral blood mononuclear cells (PBMCs) and THP-1 cells. The two methods tested were 'pre-warming' and 'dissolving with NaOH'. METHODS: Primary human PBMCs and THP-1 cells were exposed to urate solutions, prepared using the two methodologies: pre-warming and dissolving with NaOH. Afterwards, cells were stimulated with various stimuli, followed by the measurement of the inflammatory mediators IL-1ß, IL-6, IL-1Ra, TNF, IL-8, and MCP-1. RESULTS: In PBMCs, we observed an overall pro-inflammatory effect of urate, both in the pre-warming and the NaOH dissolving method. A similar pro-inflammatory effect was seen in THP-1 cells for both dissolving methods after restimulation. However, THP-1 cells exhibited pro-inflammatory profile with exposure to urate alone without restimulation. We did not find MSU crystals in our cellular assays. CONCLUSIONS: Overall, the urate dissolving methods do not have critical impact on its inflammatory properties. Soluble urate prepared using either of the two methods showed mostly pro-inflammatory effects on human primary PBMCs and monocytic cell line THP-1. However, human primary PBMCs and the THP-1 differ in their response to soluble urate without restimulation.


Subject(s)
Hyperuricemia , Uric Acid , Humans , Uric Acid/pharmacology , Uric Acid/metabolism , Hyperuricemia/metabolism , Leukocytes, Mononuclear/metabolism , Sodium Hydroxide/metabolism , Sodium Hydroxide/pharmacology , Monocytes , Inflammation Mediators/metabolism
13.
J Agric Food Chem ; 72(5): 2573-2584, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38240209

ABSTRACT

Hyperuricemia (HUA) is a metabolic disorder characterized by an increase in the concentrations of uric acid (UA) in the bloodstream, intricately linked to the onset and progression of numerous chronic diseases. The tripeptide Pro-Glu-Trp (PEW) was identified as a xanthine oxidase (XOD) inhibitory peptide derived from whey protein, which was previously shown to mitigate HUA by suppressing UA synthesis and enhancing renal UA excretion. However, the effects of PEW on the intestinal UA excretion pathway remain unclear. This study investigated the impact of PEW on alleviating HUA in rats from the perspective of intestinal UA transport, gut microbiota, and intestinal barrier. The results indicated that PEW inhibited the XOD activity in the serum, jejunum, and ileum, ameliorated intestinal morphology changes and oxidative stress, and upregulated the expression of ABCG2 and GLUT9 in the small intestine. PEW reversed gut microbiota dysbiosis by decreasing the abundance of harmful bacteria (e.g., Bacteroides, Alloprevotella, and Desulfovibrio) and increasing the abundance of beneficial microbes (e.g., Muribaculaceae, Lactobacillus, and Ruminococcus) and elevated the concentration of short-chain fatty acids. PEW upregulated the expression of occludin and ZO-1 and decreased serum IL-1ß, IL-6, and TNF-α levels. Our findings suggested that PEW supplementation ameliorated HUA by enhancing intestinal UA excretion, modulating the gut microbiota, and restoring the intestinal barrier function.


Subject(s)
Dipeptides , Gastrointestinal Microbiome , Hyperuricemia , Rats , Animals , Hyperuricemia/metabolism , Uric Acid/metabolism , Whey Proteins , Peptides
14.
J Mater Chem B ; 12(4): 1064-1076, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38168723

ABSTRACT

An appropriate non-oral platform via transdermal delivery of drugs is highly recommended for the treatment of hyperuricemia. Herein, a core-shell structured microneedle patch with programmed drug release functions was designed to regulate serum uric acid (SUA) levels for prolonged hyperuricemia management. The patch was fabricated using a three-step casting method. Allopurinol (AP), an anti-hyperuricemic drug, was encapsulated within the carboxymethyl cellulose (CMC) layer, forming the "shell" of the MNs. The MN's inner core was composed of polyvinylpyrrolidone (PVP) loaded with urate oxidase-calcium peroxide nanoparticles (UOx-CaO2 NPs). When the as-fabricated core-shell structured microneedles were inserted into the skin, the loaded AP was first released immediately to effectively inhibit the production of SUA due to the water solubility of CMC. Subsequently, the internal SUA was further metabolized by UOx, leading to exposure of CaO2 NPs. The sustained release of UOx accompanied by the decomposition of CaO2 NPs contributed to maintaining a state of normal uric acid levels over an extended period. More attractively, uric acid could be oxidized due to the strong oxidant of CaO2, which was beneficial to the continuous consumption of uric acid. In vivo results showed that the as-fabricated MNs exhibited an excellent anti-hyperuricemia effect to reduce SUA levels to the normal state within 3 h and maintain the normouricemia state for 12 h. In addition, the levels of creatinine (Cr) and blood urea nitrogen (BUN) in the serum remained within the normal range, and the activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) in the liver were effectively inhabited, mitigating the risk of liver and kidney damage for clinical anti-hyperuricemia management.


Subject(s)
Hyperuricemia , Humans , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Uric Acid , Kidney/metabolism , Drug Liberation , Allopurinol/metabolism , Allopurinol/pharmacology , Allopurinol/therapeutic use
15.
Food Chem Toxicol ; 183: 114307, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38052408

ABSTRACT

Uric acid (UA) is the final metabolite of purines in the liver that can cause hyperuricemia at high levels. The kidneys are the main excretory organs for UA. The excessive accumulation of UA in the kidneys causes the development of hyperuricemia that often leads to renal injury. Eupatilin (Eup) is a flavonoid natural product that possesses various pharmacological properties such as antioxidant, anti-cancer, and anti-inflammatory. We were interested in exploring the potential role of Eup in lowering UA and nephroprotective. We initially investigated the effects of Eup on xanthin oxidase (XOD) activity in vitro, followed by investigating its ability to lower UA levels, anti-inflammatory effects, nephroprotective effects, and the underlying mechanisms using hyperuricemia rats sustained at high UA level. The results showed that Eup had an inhibitory effect on XOD activity in vitro and significantly reduced serum UA, creatinine, BUN, IL-1ß and IL-6 levels in hyperuricemic rats, ameliorating inflammation, renal oxidative stress and pathological injury. Furthermore, Eup inhibited ADA and XOD enzyme activities in the liver and serum and modulated GLUT9, URAT1 and ABCG2 protein expression in the kidneys and ileum. Our findings provide a scientific basis for suggesting Eup as an option for a potential treatment for hyperuricemia.


Subject(s)
Hyperuricemia , Rats , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Xanthine Oxidase , Kidney , Flavonoids/pharmacology , Flavonoids/therapeutic use , Uric Acid/metabolism , Anti-Inflammatory Agents/pharmacology
16.
Adv Sci (Weinh) ; 11(5): e2305126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38054350

ABSTRACT

Hyperuricemia, caused by an imbalance between the rates of production and excretion of uric acid (UA), may greatly increase the mortality rates in patients with cardiovascular and cerebrovascular diseases. Herein, for fast-acting and long-lasting hyperuricemia treatment, armored red blood cell (RBC) biohybrids, integrated RBCs with proximal, cascaded-enzymes of urate oxidase (UOX) and catalase (CAT) encapsulated within ZIF-8 framework-based nanoparticles, have been fabricated based on a super-assembly approach. Each component is crucial for hyperuricemia treatment: 1) RBCs significantly increase the circulation time of nanoparticles; 2) ZIF-8 nanoparticles-based superstructure greatly enhances RBCs resistance against external stressors while preserving native RBC properties (such as oxygen carrying capability); 3) the ZIF-8 scaffold protects the encapsulated enzymes from enzymatic degradation; 4) no physical barrier exists for urate diffusion, and thus allow fast degradation of UA in blood and neutralizes the toxic by-product H2 O2 . In vivo results demonstrate that the biohybrids can effectively normalize the UA level of an acute hyperuricemia mouse model within 2 h and possess a longer elimination half-life (49.7 ± 4.9 h). They anticipate that their simple and general method that combines functional nanomaterials with living cell carriers will be a starting point for the development of innovative drug delivery systems.


Subject(s)
Hyperuricemia , Metal-Organic Frameworks , Humans , Animals , Mice , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Disease Models, Animal , Uric Acid , Erythrocytes/metabolism
17.
Eur J Nutr ; 63(3): 697-711, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38147149

ABSTRACT

PURPOSE: Probiotics have been reported to effectively alleviate hyperuricemia and regulate the gut microbiota. The aim of this work was to study the in vivo anti-hyperuricemic properties and the mechanism of a novel strain, Lactiplantibacillus plantarum X7022. METHODS: Purine content and mRNA expression of purine assimilation related enzymes were determined by HPLC and qPCR, respectively. Hyperuricemic mice were induced by potassium oxonate and hypoxanthine. Uric acid (UA), blood urea nitrogen, creatinine and renal inflammation were examined by kits. The expression of renal UA transporters was subjected to western blotting. Kidney tissues were sectioned for histological analysis. The fecal short-chain fatty acids (SCFAs) were determined by HPLC, and gut microbiota was investigated using the 16S rDNA metagenomic sequencing. RESULTS: L. plantarum X7022 possesses a complete purine assimilation pathway and can exhaust xanthine, guanine, and adenine by 82.1%, 33.1%, and 12.6%, respectively. The strain exhibited gastrointestinal viability as 44% at the dose of 109 CFU/mL in mice. After four-week administration of the strain, a significant decrease of 35.5% in the serum UA level in hyperuricemic mice was achieved. The diminished contents of fecal propionate and butyrate were dramatically boosted. The treatment also alleviated renal inflammation and restored renal damage. The above physiological changes may due to the inhibited xanthine oxidase (XO) activity, as well as the expressional regulation of UA transporters (GLUT9, URAT1 and OAT1) to the normal level. Notably, gut microbiota dysbiosis in hyperuricemic mice was improved with the inflammation and hyperuricemia related flora depressed, and SCFAs production related flora promoted. CONCLUSION: The strain is a promising probiotic strain for ameliorating hyperuricemia.


Subject(s)
Gastrointestinal Microbiome , Hyperuricemia , Mice , Animals , Hyperuricemia/drug therapy , Hyperuricemia/chemically induced , Hyperuricemia/metabolism , Kidney/metabolism , Uric Acid , Inflammation/metabolism
18.
J Ethnopharmacol ; 322: 117678, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38159820

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperuricemic nephropathy (HN) is a renal injury caused by hyperuricemia and is the main cause of chronic kidney disease and end-stage renal disease. ShiWeiHeZiSan, which is composed mainly of components of Terminalia chebula Retz. And is recorded in the Four Medical Tantras, is a typical traditional Tibetan medicinal formula for renal diseases. Although T. chebula has been reported to improve renal dysfunction and reduce renal cell apoptosis, the specific mechanism of the nephroprotective effects of T. chebula on HN is still unclear. AIM OF THE STUDY: This study was conducted to evaluate the effects and specific mechanism of T. chebula extract on HN through network pharmacology and in vivo and in vitro experiments. MATERIALS AND METHODS: Potassium oxalate (1.5 g/kg) and adenine (50 mg/kg) were combined for oral administration to establish the HN rat model, and the effects of T. chebula extract on rats in the HN model were evaluated by renal function indices and histopathological examinations. UPLC-Q-Exactive Orbitrap/MS analysis was also conducted to investigate the chemical components of T. chebula extract, and the potential therapeutic targets of T. chebula in HN were predicted by network pharmacology analysis. Moreover, the activation of potential pathways and the expression of related mRNAs and proteins were further observed in HN model rats and uric acid-treated HK-2 cells. RESULTS: T. chebula treatment significantly decreased the serum uric acid (SUA), blood urea nitrogen (BUN) and serum creatinine (SCr) levels in HN rats and ameliorated renal pathological injury and fibrosis. A total of 25 chemical components in T. chebula extract were identified by UPLC-Q-Exactive Orbitrap/MS analysis, and network pharmacology analysis indicated that the NF-κB pathway was the potential pathway associated with the therapeutic effects of T. chebula extract on HN. RT‒PCR analysis, immunofluorescence staining and ELISA demonstrated that the mRNA and protein levels of TLR4 and MyD88 were significantly decreased in the renal tissue of HN rats after treatment with T. chebula extract at different concentrations, while the phosphorylation of P65 and the secretion of TNF-α and IL-6 were significantly inhibited. The results of in vitro experiments showed that T. chebula extract significantly decreased the protein levels of TLR4, MyD88, p-IκBα and p-P65 in uric acid-treated HK-2 cells and inhibited the nuclear translocation of p65 in these cells. In addition, the expression of inflammatory factors (IL-1ß, IL-6 and TNF-α) and fibrotic genes (α-SMA and fibronectin) was significantly downregulated by T. chebula extract treatment, while E-cadherin expression was significantly upregulated. CONCLUSION: T. chebula extract exerts nephroprotective effects on HN, such as anti-inflammatory effects and fibrosis improvement, by regulating the TLR4/MyD88/NF-κB axis, which supports the general use of T. chebula in the management of HN and other chronic kidney diseases.


Subject(s)
Hyperuricemia , Terminalia , Rats , Animals , NF-kappa B/metabolism , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Myeloid Differentiation Factor 88/metabolism , Uric Acid/pharmacology , Toll-Like Receptor 4/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Terminalia/metabolism , Fibrosis
19.
J Dig Dis ; 25(1): 44-60, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38126957

ABSTRACT

OBJECTIVE: The intestine is responsible for approximately one-third of uric acid (UA) excretion. The effect of commensal Enterococcus faecalis (E. faecalis), one of the most colonized bacteria in the gut, on UA excretion in the intestine remains to be investigated. The aim of this study was to evaluate the effect of commensal E. faecalis on UA metabolism and gut microbiota. METHODS: The 16S rRNA gene sequencing was used to examine the species of Enterococcus in mouse fecal content. E. faecalis strain was isolated from mouse feces and identified to be E. faecalis W5. The hyperuricemia (HUA) animal model was established with yeast-rich forage and 250 mg·kg-1 ·day-1 potassium oxonate. Oral administration of E. faecalis W5 was given for 20 days, serving as the Efa group. RESULTS: Disrupted intestinal barrier, activated proinflammatory response and low UA excretion in the intestine were found in HUA mice. After E. faecalis W5 treatment, the gut barrier was restored and serum UA level was decreased. Additionally, fecal and intestinal UA levels were elevated, intestinal urate transporter ABCG2 and purine metabolism were upregulated. Moreover, short-chain fatty acid levels were increased, and intestinal inflammation was ameliorated. CONCLUSIONS: Commensal E. faecalis W5 ameliorated HUA through reversing the impaired gut barrier, promoting intestinal UA secretion by regulating ABCG2 expression, and decreasing intestinal UA synthesis by regulating purine metabolism. The results may provide the potential for developing treatments for HUA through the intestine.


Subject(s)
Gastrointestinal Microbiome , Hyperuricemia , Mice , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Enterococcus faecalis , RNA, Ribosomal, 16S , Purines
20.
Front Immunol ; 14: 1282890, 2023.
Article in English | MEDLINE | ID: mdl-38053999

ABSTRACT

Changes in lifestyle induce an increase in patients with hyperuricemia (HUA), leading to gout, gouty arthritis, renal damage, and cardiovascular injury. There is a strong inflammatory response in the process of HUA, while dysregulation of immune cells, including monocytes, macrophages, and T cells, plays a crucial role in the inflammatory response. Recent studies have indicated that urate has a direct impact on immune cell populations, changes in cytokine expression, modifications in chemotaxis and differentiation, and the provocation of immune cells by intrinsic cells to cause the aforementioned conditions. Here we conducted a detailed review of the relationship among uric acid, immune response, and inflammatory status in hyperuricemia and its complications, providing new therapeutic targets and strategies.


Subject(s)
Arthritis, Gouty , Gout , Hyperuricemia , Humans , Hyperuricemia/complications , Hyperuricemia/metabolism , Uric Acid/metabolism , Gout/drug therapy , Arthritis, Gouty/drug therapy , Inflammation/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...